Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Med Biol ; 68(24)2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-37949063

RESUMO

Objective. Transcranial magnetic stimulation (TMS) coil design involves a tradeoff among multiple parameters, including magnetic flux density (B), inductance (L), induced electric (E) field, focality, penetration depth, coil heating, etc. Magnetic materials with high permeability have been suggested to enhance coil efficiency. However, the introduction of magnetic core invariably increases coil inductance compared to its air-core counterpart, which in turn weakens theEfield. Our lab previously reported a rodent-specific TMS coil with silicon steel magnetic core, achieving 2 mm focality. This study aims to better understand the tradeoffs amongB,L,andEin the presence of magnetic core.Approach. The magnetic core initially operates within the linear range, transitioning to the nonlinear range when it begins to saturate at high current levels and reverts to the linear range as coil current approaches zero; both linear and nonlinear analyses were performed. Linear analysis assumes a weak current condition when magnetic core is not saturated; a monophasic TMS circuit was employed for this purpose. Nonlinear analysis assumes a strong current condition with varying degrees of core saturation.Main results. Results reveal that, the secondaryEfield generated by the silicon steel core substantially changed the dynamics during TMS pulse. Linear and nonlinear analyses revealed that higher inductance coils produced stronger peakEfields and longerEfield waveforms. On a macroscopic scale, the effects of these two factors on neuronal activation could be conceptually explained through a one-time-constant linear membrane model. Four coils with differentB,L,andEcharacteristics were designed and constructed. BothEfield mapping and experiments on awake rats confirmed that inductance could be much higher than previously anticipated, provided that magnetic material possesses a high saturation threshold.Significance. Our results highlight the novel potentials of magnetic core in TMS coil designs, especially for small animals.


Assuntos
Silício , Estimulação Magnética Transcraniana , Ratos , Animais , Desenho de Equipamento , Estimulação Magnética Transcraniana/métodos , Roedores , Eletricidade , Aço
2.
Brain Stimul ; 15(3): 833-842, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35636708

RESUMO

BACKGROUND: Theta burst stimulation (TBS) is an efficient noninvasive neuromodulation paradigm that has been widely adopted, clinically. However, the efficacy of TBS treatment remains similarly modest as conventional 10 Hz repetitive transcranial magnetic stimulation (rTMS). OBJECTIVE/HYPOTHESIS: To develop a new TBS paradigm that enhances the effects of TMS administration while maintaining high time-efficiency. METHODS: We describe here a new TMS paradigm, named High-Density Theta Burst Stimulation (hdTBS). This paradigm delivers up to 6 pulses per burst, as opposed to only 3 in conventional TBS, while maintaining the inter-burst interval of 200 ms (or 5 Hz) - a critical parameter in inducing long-term potentiation. This paradigm was implemented on a TMS stimulator developed in-house; its physiological effects were assessed in the motor cortex of awake rats using a rodent specific focal TMS coil. Microwire electrodes were implanted into each rat's limb muscles to longitudinally record motor-evoked potential (MEP). Four different TBS paradigms (3, 4, 5 or 6 pulses per burst, 200 s per session) were tested; MEP signals were recorded immediately before (baseline) and up to 35 min post each TBS session. RESULTS: We developed a stimulator based on a printed-circuit board strategy. The stimulator was able to deliver stable outputs of up to 6 pulses per burst. Animal experiments (n = 15) revealed significantly different aftereffects induced by the four TBS paradigms (Friedman test, p = 0.018). Post hoc analysis further revealed that, in comparison to conventional 3-pulse TBS, 5- and 6-pulse TBS enhanced the aftereffects of MEP signals by 56% and 92%, respectively, while maintaining identical time efficiency. CONCLUSION(S): A new stimulation paradigm is proposed, implemented and tested in the motor cortex of awake rats using a focal TMS coil developed in the lab. We observed enhanced aftereffects as assessed by MEP, with no obvious adverse effects, suggesting the translational potentials of this paradigm.


Assuntos
Córtex Motor , Estimulação Magnética Transcraniana , Animais , Potencial Evocado Motor/fisiologia , Potenciação de Longa Duração , Córtex Motor/fisiologia , Músculo Esquelético/fisiologia , Ratos , Ritmo Teta/fisiologia
3.
Appl Opt ; 61(34): 10105-10115, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36606771

RESUMO

Single-shot 3D shape reconstruction integrating structured light and deep learning has drawn considerable attention and achieved significant progress in recent years due to its wide-ranging applications in various fields. The prevailing deep-learning-based 3D reconstruction using structured light generally transforms a single fringe pattern to its corresponding depth map by an end-to-end artificial neural network. At present, it remains unclear which kind of structured-light patterns should be employed to obtain the best accuracy performance. To answer this fundamental and much-asked question, we conduct an experimental investigation of six representative structured-light patterns adopted for single-shot 2D-to-3D image conversion. The assessment results provide a valuable guideline for structured-light pattern selection in practice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...